Course Information Sheet

Faculty: Faculty of Humanities and Natural Sciences	
Code: 2FYZ/mKVAME/22 Title of Course: THEORETICAL PHYSICS 1 - QUAN MECHANICS	ТИМ
Form of Study: Lectures, seminars	
Number of contact hours: 48	
per week: 3/1 per level/semester:	
Number of credits: 6	
Semester: winter	
Degree/Level: 1. level	
Prerequisities: Atomic and nuclear physics from the general course of Physics. Mastering the	
differential and integral calculus.	
Grading Policy (Assessment/Evaluation):	
individual work, written assignments, oral exam	
Aims and Objectives:	
To show the principle difference between the description of the micro-world phenomena and i	he
classical description manifested in the basic principles of quantum mechanics: the principle	oj
solution of Schrodinger's equation in the individual potential fields.	ne
Syllabus/Indicative Content:	
1. Introduction to Quantum Physics - origin, experiments, history. Fundamental principles	of
quantum mechanics (superposition, uncertainty, complementarity, corresponden	ze,
microcausality).	
2. Quantum mechanics postulates: wave function; operators in quantum physics; quantizatio	1 -
operators eigen functions and eigen values; wave function reduction; Schrödinger tin	ie-
3 Continuity equation in quantum mechanics	
4. Connection of quantum and classic mechanics: Hamilton - Jacobi equation: Bohr's quant	ım
condition; operator of time derivation, quantum Poisson brackets.	
5. Quantum equation of motion - Ehrenfest motion equations.	
6. The laws of conservation in quantum mechanics: motion integrals; law of energy conservation	on;
motion in central field.	
8 Solving of Schrödinger equation for free particle	
9. Solving of Schrödinger equation in wave pocket shape.	
10. Solving of Schrödinger equation for one-dimensional and three-dimensional potential well	of
the infinite deep.	
11. Solving of Schrödinger equation for one-dimensional and three-dimensional potential well	of
the finite deep.	
12. Discrete spectrum for potential well of the finite deep.	n
14. Solving of Schrödinger equation for the potential barrier of infinite and finite wid	p. th.
reflection and transition coefficient.	,
15. Tunnel effect, its applications and utilization.	
16. Solving of Schrödinger equation for harmonic oscillator.	
17.Notation of Schrödinger's equation in the spherical coordinates.	nd
continuous spectrum	па
19.Magnetic moment and angular momentum.	
20.Electron spin. Pauli matrixes.	
21.Perturbation theory - stationary perturbation theory.	
22.Stark and Zeeman effect.	
23.Helium atom.	

Suggested readings:

- 1. Škála, L. 2005. *Úvod do kvantové mechaniky*. Praha: Academia.
- 2. Pišút, J., Gomolčák, L., Černý, V. 1984. Úvod do kvantovej mechaniky. Bratislava: Alfa.
- 3. Davydov, A. S. 1978. Kvantová mechanika. Praha: SPTV.
- 4. Beiser, A. 1978. Úvod do moderní fyziky. Praha.
- 5. Lendel, V. I., Salák, M. 1984. Výberové prednášky z fyziky. Bratislava: SPN.
- 6. Pišút, J., Černý, V., Prešnajder, P. 1985. Zbierka úloh z kvantovej mechaniky. Bratislava/Praha: Alfa/SNTL.
- 7. Salák, M. Kvantová mechanika. CD záznam prednášok. Univerzitná knižnica PU.
- 8. Shankar, R. 1994. Principles of Quantum Mechanics. Sprinter. ISBN 978-0-306-44790-7

Language of Instruction: English

Other course information:

Lecturer/Instructor: prof. RNDr. Marián Reiffers, DrSc.

Last update: 3. mája 2024

Approved by: prof. RNDr. Marián Reiffers, DrSc.