Course Information Sheet

University: University of Prešov in Prešov	
Faculty: Faculty of Humanities and Natural Sciences	
Code: 2 <i>FYZ/mOPTIK/22</i> T	itle of Course: GENERAL PHYSICS 3 - Optics
Form of Study: Lectures, seminars, laborato	ry work
Number of contact hours: 65	
per week: 3/1/1 per level/semester:	
Number of credits: 5	
Semester: summer	
Degree/Level: 1. level	
Prerequisities: The general course of Physics, the basis of differential and integral calculus.	
Grading Policy (Assessment/Evaluation): individual work, written assignments, task solving	
25%, credit 12%, test 13%, written and oral exam 50%	
A= min. 90%, B= min. 80%, C= min. 70%, D= min. 60%, E= min. 50%, FX < 50%	
Aims and Objectives:	
The course consists of lectures, seminars and practical training (labs) The aim of the course is to provide the students with the basis of methodology of solving the physical task, to teach them to	
systematically work with the recommended literature. The aim of the part Optics is to explain	
the basic concept and terminology from Optics.	
Syllabus/Indicative Content:	
Lectures	
Definition of optics. Study of optical frequencies / wavelengths of the wave equation in	
Cartesian, cylindrical and spherical coordinate systems.	
Two beams and many beams interference	
Optical grating.	
Holography.	
Transfer, reflection, refraction and dispersion of light.	
Geometric optics. The lens's equation. Dispersion prism.	
Fundamentals of spectroscopy. The concept of photon, wave particle dualism	
Interaction of optical radiation with matter. Finstein coefficients, population inversion, optical	
and non-optical pumping.	
Laser resonator modes.	
Black-body radiation. Noise radiation, Poisson distribution and Fourier transformation.	
Detection of optical radiation.	
Radiometry and photometry. Optical fibers	
Practicals:	
Lens's equation - and determine the focal le	ength of the main points of the optical system, the
determination of magnification microscope and a telescope.	
Polarimetry - determining the concentration of substances in solution.	
Refractive Index - the refractometer measurement.	
Basics of optical spectroscopy - spectral analysis of gases. Diffraction - the study of the optical grattings	
Seminaries:	
Wave equation in Cartesian, cylindrical and spherical coordinate system,	
Black body radiation.	
Poisson distribution.	
Fourier transformation.	

Suggested readings:

- 1. http://www.lightandmatter.com/lm/
- 2. *HyperPhysics* http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
- 3. http://www.freebookcentre.net/Physics/Optics-Books-Download.html
- 4. www.en.wikipedia.org
- 5. Crowell, B.: *Electricity and magnetism.* 2005. http://www.lightandmatter.com/html_books/4em/ch06/ch06.html
- 6. Halliday, D., Resnick, R., Walker, J. 2008. *Fundamentals of Physics*. 8th Edition.University of Pittsburgh, Hardcover. ISBN: 978-0-470-04472-8

Language of Instruction: English

Other course information:

Lecturer/Instructor: RNDr. Jozef Kmec, PhD.

Last update: 3. mája 2024

Approved by: Dr. h. c. doc. PaedDr. Vladimír Šebeň, PhD.